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Neural networks are applied to the identi"cation of non-linear structural dynamic
systems. Two complementary problems inspired from customer surveys are successively
considered. Each of them calls for a di!erent neural approach. First, the mass of the system is
identi"ed based on acceleration recordings. Statistical experiments are carried out to
simultaneously characterize optimal pre-processing of the accelerations and optimal neural
network models. It is found that key features for mass identi"cation are the fourth statistical
moment and the normalized power spectral density of the acceleration. Second, two
architectures of recurrent neural networks, an autoregressive and a state-space model, are
derived and tested for dynamic simulations, showing higher robustness of the autoregressive
form. Discussion is "rst based on a non-linear two-degree-of-freedom problem. Neural
identi"cation is then used to calculate the load from seven acceleration measurements on
a car. Eighty three per cent of network estimations show below 5% error.

( 2001 Academic Press
1. INTRODUCTION

Economical constraints call for a faster cycle of development and use of structural models.
They also call for safeguards against errors occurring in material characterization,
boundary conditions description and manufacturing. System identi"cation and neural
network techniques are more directly geared towards respecting these constraints than
traditional modelling for two reasons: they involve simpler representation than the "nite
element method and directly account for errors when the model is created.

Linear system identi"cation has been thoroughly described by Ljung [1]. Numerous
applications of system identi"cation to control, signal processing and pattern recognition
exist (see references [1, 2]). In structural dynamics, linear system identi"cation is a valuable
approach for random vibration problems [3].

Neural networks have received massive attention in the last two decades.
Complementary review papers have been written (references [4, 5]). Reference [6] gives an
0022-460X/01/470247#19 $35.00/0 ( 2001 Academic Press
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excellent introduction to neural networks in a probabilistic context. Early use of
feed-forward and Hop"eld neural networks for structural analysis and design are found in
reference [7]. Many applications of feed-forward neural networks to material engineering
are presented in reference [8]. In reference [9], the identi"cation of #utter and boundary
conditions of a cantilever beam is performed using feed-forward networks.

Since the work of Chen et al. [10], neural networks have provided a framework for
non-linear system identi"cation. Their contribution to identi"cation and control of
non-linear dynamic systems has been analyzed in reference [11]. Neuro control of
structures has rapidly emerged as a primary application of the technique [12}14].

Typically, during customer surveys in the automobile industry, data on accelerations are
gathered. Other information is then inferred from the acceleration measurement. This paper
deals with the identi"cation of the vertical dynamics of a vehicle from acceleration
measurements using neural networks. Two interwoven problems are addressed. First, the
mass of a vehicle driving on an unknown road is identi"ed from the acceleration
measurement. Feed-forward neural networks whose variance is controlled by early stopping
and cross-validation provide a methodology for extracting features from accelerations in
order to best characterize the mass of the system. Second, knowing that the mass of the system
is estimated, the dynamics of the vehicle is learned by recurrent neural networks.
Performances of state-space and autoregressive neural architectures are compared.

The discussion relies mainly on a simple two-degree-of-freedom one-wheel system
because it permits the explicit derivation of network structures and the comparison between
feature extraction and sensitivity analysis. The last part of the paper provides an application
to a real car where the load transmitted from the wheel to the suspension is derived from
seven acceleration measurements at other car locations.

2. NEURAL SYSTEM IDENTIFICATION VERSUS STRUCTURAL MODELLING

Modelling in structural vibrations usually results from writing fundamentally principles
(Newton's law, equilibrium principle and material constitutive law) as partial di!erential
equations and integrating them over time and space in an adequate manner. Popular
modelling and analysis techniques in structural mechanics include the "nite element
method and the boundary element method. The resulting models potentially represent the
entire mechanical structure. Time integration, hence, provides the response at any location
of the discretization in terms of acceleration history, stress, pressure, etc. For linear systems,
modal analysis consists in characterizing the behavior of the system in terms of resonance.
This analysis technique is very popular because modal superposition principles can be
applied to approximate the response at any level of accuracy.

Likewise, most system identi"cation techniques developed in the "eld of structural
dynamics are based on the notion of resonant modes and frequencies. Given the system's
vibration time history measured at a few discrete locations, these algorithms attempt to
reconstruct the system's frequency response functions. These may further be characterized
in terms of resonant frequencies, modal masses, modal damping ratios and deformation
shapes. Although successful applications are documented in the literature to either identify
the dynamics of complex systems, detect the occurrence of structural damage or implement
health monitoring platforms [15], the mathematical assumptions behind linearity and
time-to-frequency transformation restricts these algorithms to linear regimes,
low-frequency dynamics and deterministic systems. A recent review shows that very little
literature is currently available in the "eld of structural dynamics for identifying non-linear,
stochastic structural dynamics and correlating test data to numerical predictions [16].
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The approach described in this paper, termed system identi"cation, also, sidesteps the
integration of fundamental principles to focus on the input/output relationship. Emphasis is
shifted from physics to statistics. Therefore, a &&statistically correct'' model is sought which
may not necessarily be &&mathematically correct'' in the sense that fundamental principles of
structural mechanics may not be satis"ed. The reason is that inverse models capable of
representing arbitrarily complex non-linear systems are generally not available, especially
when investigating systems that may feature material non-linearity, localized contact and
impact dynamics and transient responses [17]. Another important motivation is the
identi"cation of stochastic systems, a "eld of open research to a great extent in non-linear
structural dynamics. Here, the &&black-box'' linking inputs to outputs is a neural network,
that can be seen as a family of parameterized non-linear functions. The parameters are
tuned by minimizing a distance between network and real system outputs. Neural network
properties regarding universal approximation [18, 19], complexity control, parsimony, and
the amount of learning strategies (optimization algorithms, regularization, see reference [6])
developed in the last 15 years make them a particularly attractive representation tool.

Although neural network-based system identi"cation does not include as much physics
as traditional modelling does, it o!ers the following important advantages:

(1) Only experimental measurements of inputs and outputs are necessary to represent the
system. Modelling is possible even if no physical model exists.

(2) Because of their universal approximation properties, neural networks can identify
non-linear and stochastic systems. Accounting for uncertainty and environmental
variability is critical in applications where, for example, assembling tolerances may not have
been fully complied with; when material characteristics may vary with temperature and
humidity conditions; or when an input to the system (such as the road pro"le in the
following numerical application) is an unknown, stochastic variable.

(3) System identi"cation [1] and neural networks [6] o!er a probabilistic framework to
the representation. For example, when the input/output relationship is learned by
minimizing a least-square distance between the neural network response and the
experiments, the neural network learns the average response of the system conditioned on
the input (assuming a large number of data and neurons). System identi"cation can
therefore be used in cases where the system is not well-de"ned. If one of its characteristics,
such as a boundary condition or a material property, is unknown, the neural network still
predicts the response. Such predictions would be di$cult to achieve, if not impossible, with
models based on the conventional principles of structural mechanics. The type of prediction
produced (maximum likelihood, conditional average, etc.) depends mainly on the norm
minimized for identifying the neural network. Noise on the data can be accounted for by
controlling the network e!ective complexity.

(4) Once they have proceeded through a &&tuning'' step, neural networks are numerically
very e$cient. They can replace complex engineering or physics simulations that would
otherwise require several hours of computing time on the most advanced platforms. It may
therefore be advantageous for re-analysis, sensitivity analysis, parametric studies or
optimization to replace the full-order calculation by a &&fast running model'' or meta-model
formed of neural networks.

Finally, it is emphasized that system identi"cation strategy proceeds di!erently from its
conventional counterparts. Instead of inverting a mathematical model that would represent
the forward problem, which is what the over whelming majority of techniques attempt to
achieve in structural dynamics, a neural network will infer the inverse model directly from
test data without having, "rst, to model the forward problem. This tends to reduce the
ill-conditioning di$culties encountered when operators that represent the discretized,
forward problem are numerically inverted. Of course, there is a cost to pay for bypassing the
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need of a physical description of the system. It is the training step during which test data
must be used for tuning the parameters of the neural network. Depending on the complexity
and performance expected, this "rst step may yield signi"cant computational requirements.
Several strategies are discussed in the remainder for training simple networks in the most
e$cient possible way.

3. MASS IDENTIFICATION

3.1. PRINCIPLE

The "nal goal of this work is the prediction of loads in a car component knowing
accelerations at other locations. The relation between acceleration measurements and loads
is conditioned by the car mass. This mass varies with passengers, luggage, gas tank level, etc.
A preliminary problem is, therefore, the determination of the car mass from accelerations.

The driver being free to take the car where he pleases, the road pro"le is not known in
a deterministic way. It is assumed that the road can be described by an ergodic stationary
random process. It implies that at a given mass, speed, and road curvatures, acceleration
measurements are also an ergodic and stationary random process. In that case, a unique
mapping exists between acceleration statistics and the mass. The determination of the
statistics and associated mapping solves the mass identi"cation problem. A di$culty arises,
however, from the stationarity assumption: the car can be assumed to move in a straight line
at constant speed only over a short time period. Acceleration statistics are noisy over such
"nite sampling time. The mass identi"cation problem can "nally be stated as follows:
knowing accelerations during D¹ s, "nd the statistical features and associated mapping that
predict the car mass in a robust way.

To construct the mapping, it is assumed that N
%91

experiments have been carried out,
yielding a database D of N

exp
pairs [accelerations, mass], [xK (j)

1
, dm(j)], j"1, N

exp
.

xK
1

denotes the vector of accelerations [xK
1
(t
1
),2, xK

1
(t
M
)]T, (t

M
!t

1
)"D¹. To simplify

notations, xK
1
will sometimes be written as y. There are too many acceleration measurements

for them to be directly used in the mapping. Accelerations are thus pre-processed to
produce N

F
statistical features, u

i
(xK

1
)"u

i
, i"1, N

F
. The working database D is "nally

composed of paris [acceleration statistics, mass], [u( j), dm( j)]. Finding the inverse mapping
from xK

1
to dm involves two coupled subproblems:

(1) Determine a subset uI of features used by the mapping.
(2) Find an associated mapping,

dmY "f (uI (xK
1
), w), (1)

where Y means estimate. The function f is modelled using a feed-forward neural network
with one hidden layer of sigmoidal units and an output layer of linear units (see references
[4}6] for introductory comments on neural networks). Training of the network is done by
calculating w that minimizes a least-squares error function between dm and dmY over a part
D

D
of D, E (D

D
, w). Minimization is performed by a Levenberg}Marquardt algorithm

[20, 21]. Assuming a large database D and a large number of hidden neurons, f therefore
tends to the regressor of dm knowing uI ,

f (uI , w)PE (dm DuI), (2)

where E denotes expectation. A backpropagation algorithm [22] calculates gradients of the
least-squares error function.
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A two-degree-of-freedom linear or non-linear one-wheel system is considered (see
Figure 1). Acceleration at the wheel hub, xK

1
(t
i
) is known at discrete times t

i
with a time step

Dt"0)001 s and a total recording time D¹"14)336 s. Other data on the one-wheel system
are given in Figure 1. Seven road samples are considered for 11 masses ranging from
dm"!5% of m

2
to dm"#20% of m

2
(every 2)5% of m

2
). There is a total of

N
exp

"7]11"77 experiments. Despite its small dimensionality, this problem has
di$culties associated with the non-linearities. In addition, the input (the road pro"le) is
a random variable. Therefore, conventional system identi"cation procedures cannot be
applied here.

3.2. CANDIDATE FEATURES

Nineteen candidate features are being considered as potential inputs to the network.
Candidate features are:

(1) The "rst four statistical moments,

EK (xK
1
)"EK (y)"

1

M

M
+
i/1

y
i
, (3)

EK ((y!E(y))i )"
1

M

M
+
i/1

(y
i
!EK (y))i, i"2, 4. (4)
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(2) The power spectral density, S
yy
Y (u

k
), calculated at the discrete frequencies u

k
. S

yy
Y (u

k
)

is obtained using Welch's algorithm [23] with a window of size 256.
(3) The energy of y in the low- and medium-frequency range,

S0
y
Y
" +

ui|*umin,umax+

S
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Y (u

i
); u

min
"0 Hz, u

max
"40 Hz. (5)

(4) The normalized power spectral density,

N
yy
Y (u

k
)"S

yy
Y (u

k
)/S0Y

y
. (6)

(5) The four spectral moments,

Mi
y
Y
" +

uj|*umin,umax+

Du
j
Di S

yy
Y (u

j
), i"1, 4. (7)

(6) The normalized spectral moments,
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y
Y
" +

uj|*umin,umax+
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j
Di N
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Y (u

j
), i"1, 4. (8)

(7) The average minima and maxima of acceleration amplitude, max(y)Y and min(y)Y . xK
1
(t
i
)

is de"ned as a maximum (a minimum respectively) if xK
1
(t
i
)'xK

1
(t), ∀t3[t

i
!0)1 s, t

i
#0)1 s,

(( respectively).
(8) The coe$cients a

i
of an nth order autoregressive linear process and the associated

prediction error, eL . The a
i
's are calculated by least-squares minimization of the distance

between xK
1
(t) and a model,
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The order of the model is taken equal to 8. The prediction error is

eL"ExKK
1
!xK

1
E. (10)

Most of the candidate features, namely S
yy
Y , S0

y
Y , N

yy
Y , Mi

y
Y and Ni

y
Y , are variations on the

power spectral density. They all attempt to characterize how mass changes a!ect energy
frequency distribution. Again, the di$culty arises from the limited size of road samples
which perturbs the features. Ideally, one looks for features that are sensitive to mass
variations while being as little sensitive to road sampling as possible. The trade-o! is
already present in power spectral densities of the linear one-wheel system,

S
yy

(u)"DH(u)D2S
x0x0

(u), (11)

where H(u) is the frequency response function between x
0

and the acceleration y given in
equation (A.2). The "nite size of the sample induces variations on S

x0x0
(u), while the mass of

the system in#uences H(u). Both e!ects are mixed in accelerations, i.e., in S
yy

(u). Sensitivity
analysis of the linear one-wheel system is carried out in Appendix A. It is seen that, at 4 Hz,
the sensitivity of the power spectral density to the mass, (LS

yy
(u)/Lm

2
), is maximal.

Visual examination of some of the candidate features illustrates the trade-o! between
mass and road sensitivities. Power spectral densities S

x0x0
of seven road samples are shown

in Figure 2. Some of the features are sensitive to the mass: the "rst normalized spectral



Figure 2. Power spectral density of the road, x
0
, for the seven road samples.

Figure 3. First normalized spectral moment, N1y
Y , for varying masses and road samples. Each symbol is

associated with a road sample.
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moment, N1
y
Y (cf. Figure 3), the third statistical moment, EK ((y!EK (y))3), the power spectral

density at 4 Hz, S
yy
Y (4), the normalized power spectral density at 4 Hz, N

yy
Y (4), the second,

third and fourth spectral moments, M2
y
Y , M3

y
Y , M4

y
Y and the average amplitude of minima,

min(y)Y . Other candidate features are mainly in#uenced by road samples: the fourth
statistical moment, EK ((y!EK (y))4) (cf. Figure 4), the average, EK (y), the variance,
EK ((y!EK (y))2) and the cumulated power spectral density S0

y
Y . As will be seen later, an

important feature for mass identi"cation is S
x0x0

(4), which is unknown since it relates to the
road. Spearman's coe$cients [24] provide a measure of correlation between ranks where
#1 indicates perfect positive correlation, !1 perfect negative correlation and 0 no
correlation. Spearman's correlation coe$cients between mass insensitive features and
S
x0x0

(4) are, by decreasing values: 0)77 (EK ((y!EK (y))4)), 0)63 (EK (y)), 0)56 (S0
y
Y ) and 0)55

(EK ((y!EK (y))2)).
Note that for the linear one-wheel system, the mass can directly be read from N

yy
Y (4) with

2)5% accuracy. Masses cannot be discerned visually from N
yy
Y (4) in the non-linear case, as is

shown in Figure 5 for two masses di!erent by 10%. More elaborated feature processing is
required in the non-linear case.



Figure 4. 4th statistical moment of xK
1

for di!erent mass and road samples.

Figure 5. Normalized power spectral density of xK
1

for seven road samples and two masses: x means dm"0 and
o means dm"#10% of m

2
.
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3.3. IDENTIFICATION PROTOCOL

A trade-o! between mass and road sample sensitivities of the candidate features u
i
has

been presented. Another trade-o! between bias and variance of the mapping f (cf. equation
1) is now introduced and drives the identi"cation protocol (cf. reference [6] for a detailed
discussion on bias and variance). Bias is the average error between f and E (dm DuI), the ideal
network's response (cf. equation (2)). Variance measures sensitivity of identi"ed mappings
f to the choice of databases used in learning,D

L
. The average error committed by a mapping

f over several choices of learning database, D
L
, is the sum of bias and variance.

Minimization of bias and variance are two antagonistic goals. For example, bias is reduced
by increasing the number of hidden neurons, i.e., increasing the #exibility of the mapping.
But this increases variance. For a given network architecture, variance can be decreased by
including more experiments in the database. However, considering the cost of testing on
real vehicles, it is realistic to assume that a limited number of experiments is available.
Special care is then needed in addressing the bias}variance trade-o!. Four precautions are
taken here.

First of all, neworks with architectures of varying #exibilities are considered: 1 linear
hidden neuron, 2 and 4 sigmoidal hidden neurons.
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Second, a strategy called early stopping is used to prevent excessive variance. The idea of
early stopping is to divide the learning database D

L
into two sets, D

D
and

D
S
, D

L
"D

D
XD

S
, D

D
WD

S
"H. D

D
de"nes a direction of change of the network

parameters, typically a variation on the gradient of the least-squares error, LE/Lw. Learning
stops when the least-squares error on D

S
increases for N

inc
successive iterations. By

adjusting network parameters based on a set of experiments,D
D
, and deciding when to stop

based on another set of experiments, D
S
, it is expected that the noise present in D

D
is not

learned, thereby reducing variance.
Third, high variance means that performance might be so much related to the choice of

D
L

that no conclusions can be drawn. Let D
T

denote the testing set,
D

T
XD

L
"D, D

T
WD

L
"H. Cross-validation aims at improving error estimates by

considering average errors over several choices of training and learning sets, D
T

and D
L

in
D. Test error for a particular choice ofD

T
is written as E(D

T
) and the average test error, E

T
.

Finally, neural network structures are redundant, so that there will typically be several
solutions to learning the least-squares problem. If there are non-linear hidden neurons, local
minima may appear. Learning is susceptible of yielding results that are a function of the
initial network weight setting. Local minima are accounted for in testing by averaging test
results over N

r
runs.

The identi"cation protocol is summarized in Figure 6.

3.4. RESULTS

It is obviously not possible to test all 219 combinations of the N
F
"19 candidate features.

Instead, 33 sets of input features uI are arbitrarily chosen. For each choice of inputs, three
network architectures are tested (one linear, two and four sigmoidal hidden neurons
respectively). Results are obtained using a database of 77 experiments, corresponding to
seven road samples of 11 masses. Cross-validation averages results over three choices of
learning and testing sets. The seven road samples and all associated masses are assigned
either to D

L
or to D

T
. D

L
contains "ve road samples, four in D

D
and one in D

S
. D

T
has the

remaining two samples. Results are summarized in Table 1 for N
inc
"3 and

N
T
"100. Each test error in the Table stems from 100]3]3"900 runs. 80% con"dence
Figure 6. Mass identi"cation protocol #ow chart.



TABLE 1

Best network architectures and associated test errors. L: linear, H: sigmoidal

Inputs Test error E
T

MuIN [80% con"dence int.] arch.

N
yy
Y (u

1,2, 4), EK ((y!E(y))4) 5)67e!03 [5)19e!03; 6)15e!03] L

N1
y
Y , EK ((y!E (y))4) 7)24e!03 [6)89e!03; 7)60e!03] 2H

EK ((y!E (y))3), EK ((y!E (y))4) 7)35e!03 [7)10e!03; 7)59e!03] 4H

N1
y
Y , S0

y
Y 7)80e!03 [7)32e!03; 8)29e!03] L

N
yy
Y (u

1,2, 4) 8)34e!03 [7)71e!03; 8)97e!03] 2H

N
yy
Y (u

1,2, 4), min(y)Y 9)57e!03 [8)84e!03; 1)02e!02] L

N1
y
Y , EK ((y!E (y))4),

EK ((y!E (y))3), EK ((y!E (y))2) 9)78e!03 [9)29e!03; 1)02e!02] 4H

N1
y
Y 9)93e!03 [9)31e!03; 1)05e!02] 2H

min(y)Y , EK ((y!E (y))3),

N1
y
Y , EK ((y!E (y))4) 1)03e!02 [9)79e!03; 1)08e!02] 4H

N1
y
Y , min(y)Y , EK ((y!E (y))4) 1)05e!02 [9)98e!03; 1)11e!02] 2H

N
yy
Y (u

1,2, 4), N1
y
Y 1)12e!02 [1)06e!02; 1)19e!02] 2H

N1
y
Y , N2

y
Y 1)28e!02 [1)19e!02; 1)37e!02] 2H

N3
y
Y , EK ((y!E(y))4), EK ((y!E (y))3) 1)47e!02 [1)38e!02; 1)56e!02] 4H

N
yy
Y (u

1,2, 4), S0
y
Y 1)66e!02 [1)51e!02; 1)80e!02] L

M3
y
Y , S0

y
Y 1)69e!02 [1)57e!02; 1)80e!02] 4H

N
yy
Y (u

1,2, 4), EK ((y!E(y))3) 1)88e!02 [1)82e!02; 1)95e!02] 4H

M1
y
Y , M2

y
Y , M3

y
Y , M4

y
Y 1)94e!02 [1)86e!02; 2)02e!02] 2H

S
yy
Y , EK ((y!E(y))4) 2)03e!02 [1)93e!02; 2)12e!02] 4H

M3
y
Y , EK ((y!E(y))4) 2)21e!02 [2)10e!02; 2)32e!02] 4H

M1
y
Y , M2

y
Y 2)33e!02 [2)23e!02; 2)44e!02] 4H

max(y)Y , min(y)Y 2)35e!02 [2)24e!02; 2)47e!02] L

a
1
,2, a

8
, 4)39e!02 [4)19e!02; 4)59e!02] 2H

a
1
,2, a

8
, eL 2)49e!02 [2)37e!02; 2)61e!02] L

EK (y), EK ((y!E (y))2),

EK ((y!E (y))3), EK ((y!E (y))4) 3)07e!02 [2)97e!02; 3)17e!02] 4H

EK ((y!E (y))4), S0
y
Y 4)34e!02 [4)28e!02; 4)39e!02] 4H

S
yy
Y 5)22e!02 [5)03e!02; 5)42e!02] 4H

(hereafter, inputs use road information)

N
yy
Y (u

1,2, 4), Sxx
Y (4) 2)45e!03 [2)30e!03; 2)60e!03] L

N
yy
Y (u

1,2, 4), S0
x
Y 3)40e!03 [3)19e!03; 3)61e!03] L

N1
y
Y , S

xx
Y (4) 9)88e!03 [9)46e!03; 1)02e!02] L

N1
y
Y , EK ((y!E (y))3) , S

xx
Y (4) 1)38e!02 [1)32e!02; 1)44e!02] L

S
yy
Y (u

1,2, 4), Sxx
Y (4), S0

y
Y 1)61e!02 [1)51e!02; 1)71e!02] L

EK ((y!E (y))3), S
xx
Y (4) 4)04e!02 [3)88e!02; 4)20e!02] 2H

EK ((y!E (y))3), S0
x
Y 4)36e!02 [4)27e!02; 4)45e!02] L

256 R. LE RICHE E¹ A¸.
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intervals are given. They show meaningful di!erences in mass identi"cation performance of
varying networks.

The best prediction model found is linear and takes N
yy
Y (u

1,2, 4) and S
xx
Y (4) as inputs

(E
T
"2)45e!03). It is, however, of no direct use because it relies on information about the

road through S
xx
Y (4), which is not available. Yet, it shows that S

xx
Y (4) usefully completes

N
yy
Y (u

1,2,4
) to identify the mass. It con"rms, for the non-linear problem, what linear

sensitivity analysis hinted at (relation (11) and Appendix A). The pendant of this best overall
network that does not taken information on the road is linear and has uI"MN

yy
Y (u

1,2,4
)

EK ((y!E (y))4)N as inputs (E
T
"5)67e!03). This is logical since, among all candidate

features, EK ((y!E (y))4) has the highest correlation with the missing information, S
xx
Y (4).

Predictions of this network are illustrated in Figure 7. The average error on the mass is
1)5% and the error is always below 5%. The second-best network (not using road
information) processes N1

y
Y and EK ((y!E (y))4). It shows that the most important aspect of

normalized power spectral density for mass identi"cation is how it is distributed in the
frequency range. This is the aspect of N

yy
that is carried onto N1

y
. More generally, Table 1
Figure 7. Typical mass predictions of linear network on three learning and three testing sets: (a) Learning D
D1

;
(b) Learning D

D2
; (c) Learning D

D3
; (d) Testing D

T1
; (e) Testing D

T2
; (f) Testing D

T3
sets: Inputs are

uI"MEK (xK
1
!EK (xK

1
))4, N

yy
Y (u

1,2, 4 )N. Test error"5)33e!03. Key: ], measurement data; s, network output.
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underlines how mass identi"cation is best performed from a co-operation between features
sensitive to mass and features insensitive to mass and sensitive to road samples. The four
best networks are such examples. Another conclusion stemming from Table 1 is that N

yy
Y is

a much more reliable feature for mass identi"cation than S
yy
Y . Sensitivity analysis in the

linear case (Appendix A) explains this advantage by the robustness of N
yy
Y to road sampling.

Finally, Table 1 illustrates the bias}variance trade-o!: for the same information content and
a given database, the smaller the number of inputs (the smaller the number of weights), the
better. For example, remembering that N

yy
"S

yy
/S0

y
, MN

yy
Y (u

1,2,4
), S

xx
Y (4)N and

M S
yy
Y (u

1,2, 4 ), Sxx
Y (4), S0

y
Y N have the same input content but the "rst network should

be preferred. Similarly, MN
yy
Y (u

1,2, 4)N outperforms MN
yy
Y (u

1,2, 4), N1
y
Y N.

4. DYNAMIC SYSTEM IDENTIFICATION

The preceding discussion on mass identi"cation aims at illustrating how a vehicle can be
characterized from acceleration measurements. Next, its dynamics can be learned by
recurrent neural networks. The speci"c problem tackled here is load calculations at vehicle
locations knowing accelerations at other locations. Such a problem serves for customer
surveys in the automobile industry.

The di$culties of dynamic identi"cation are of a di!erent nature from those of mass
identi"cation. Mass identi"cation su!ered from the lack of data from which to learn. On the
contrary, dynamics identi"cation typically bene"ts from a very large database: at
a sampling frequency of 1000 Hz. Thousand data points are provided every second. Two
practical di$culties of dynamic identi"cation are the determination of network
architectures and the numerical cost of learning.

4.1. RECURRENT NEURAL NETWORK STRUCTURES

Two principal recurrent network architectures exist and will be considered here:
autoregressive networks and state-space networks. Autoregressive networks predict the
next observed outputs based on a "nite collection of previous inputs and observed outputs.
State-space networks synthesize the next observed outputs based on observed and
non-observed state variables at the previous time step. State variables play a role
comparable to memory. No noise model, that accounts for the di!erence between the
prediction and real response, is included in the present network structures since, during
simulations, the real response of the system is not known.

To keep formal agreement with the one-wheel test case of Figure 1, observed outputs of
the system are denoted as f

2
(k) (force on mass m

2
) and inputs are denoted as xK

1
(k)

(accelerations at the wheel hub), where k is the kth time step. Autoregressive output error
model are described as

regressor: / (k)"[ f
2
Y (k!1),2, f

2
Y (k!n

0
),xK

1
(k),2, xK

1
(k!n

u
)],

predictor: f
2
Y (k)"f (/ (k), w). (12)

Denoting by s(k) the state variable vector at time k, state-space models are written as

regressor: / (k)"[ s
1
Y (k),2, s

n
Y (k),xK

1
(t),xR

1
(t)],

predictor: sL (k#1)"f (sL (k), w), sL (k)"[s
1
Y (k),2, s

n
Y (k)]T,

f
2
Y (k)"C(w)sL (k). (13)
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C(w) is a visibility matrix, translating state variables into observed outputs. Note that
state-space networks considered here have a special connectivity, known as multivariate
canonical form, which guarantees identi"ability for linear hidden neurons (see reference [1],
Appendix 4A). This structure is generalized here to non-linear networks, in the hope that
good identi"ability properties are kept.

For both autoregressive and state-space recurrent neural network structures, learning is
implemented by minimizing least-squares distances to experimental data. The
Levenberg}Marquardt algorithm [20, 21] solves the optimization problem. Derivatives of
least-squares errors are calculated by backpropagation through time (cf. reference [25]).

4.2. ONE}WHEEL TEST CASE

Structures of autoregressive and state-space recurrent networks can be derived
analytically for a linear one-wheel problem by discretizing the di!erential equations (A.1).
These structures are then generalized to the non-linear problem. Discretization of equation
(A.1) is performed here by approximating derivatives by "nite di!erences. Another
approach would be to integrate the equations of motion over one-time step, assuming the
input xK

1
(t) remains constant [26].

To simplify notations and since time is discretized, time indices instead of real times are
used in the following functions of time, so that x (t!1) really means x ((t!1)Dt). The
second equation of equation (A.1) can be written at two successive time steps, and resulting
relations subtracted. This yields

f
2
(t)!f

2
(t!1)"!c

1
(DxR

2
(t)!DxR

1
(t))!k

1
(Dx

2
(t)!Dx

1
(t)), (14)

where

Dx(t)"x (t)!x (t!1), DxR (t)"xR (t)!xR (t!1). (15)

For small time steps Dt, a "rst order Taylor approximation can be used on the right side of
equation (14) to increase the degree of derivation,

f
2
(t)!f

2
(t!1)"!c

1
Dt(xK

2
(t!1)!xK

1
(t!1))

!k
1
Dt(xR

2
(t)!xR

1
(t))#O (Dt2). (16)

Writing equation (16) at two consecutive times, subtracting and using a "rst order
approximation one more time gives

m
2
f
2
(t)"(2m

2
!c

1
Dt) f

2
(t!1)#(!m

2
!k

1
Dt#c

1
Dt) f

2
(t!2)

#m
2
c
1
DtxK

1
(t!1)#(m

2
k
1
Dt2!m

2
c
1
Dt)xK

1
(t!2)#O (Dt2). (17)

Equation (17) corresponds to the autoregressive structure (12). For small time steps, it
suggests that an autoregressive network with xK

1
as inputs, f

2
(equivalently xK

2
"f

2
/m

2
) as

output and n
o
"n

u
"2, would correctly describe the linear one-wheel system.

In a similar fashion, a state-space recurrent network structure can be obtained. A system
composed of, "rst, equation (16) with xR

1
kept as in equation (14), and second, Taylor
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expansion of xR
2
(t), is a state-space expression:

C
1 c

1
0 m

2
D A

f
2
(t)

xR
2
(t)B"C

1 c
1
!k

1
Dt

Dt m
2

D A
f
2
(t!1)

xR
2
(t!1)B

#A
c
1
xR
1
(t)#(k

1
Dt!c

1
)xR

1
(t!1)#O(Dt2)

O (Dt2) B . (18)

This equation corresponds to the state-space structure (13) with s"[ f
2
xR
2
]T. Note that the

above derivations of autoregressive and state-space expressions illustrate how the number
of states and sizes of regression horizons are related. Finite di!erences translate regression
steps into state variables. Both are equal to 2 in the linear one-wheel problem. Equations
(17) and (18) could easily be represented as neural networks with linear hidden units. They
are used in the following tests to choose the network inputs and outputs. However, contrary
to the above analysis, the tests are non-linear, making more #exibility in the networks
necessary. For this reason, sigmoidal hidden units, regressions and non-observed state
variables will be added.

Both families of networks are now tested on the non-linear one-wheel problem. Learning
and testing databases contain 2000 points each. The autoregressive network is composed of
three sigmoidal and one linear hidden neurons. To be conservative, horizons of size 3 are
chosen (one more than linear analysis suggests), n

o
"n

u
"3. Early trials showed that

a state-space network is competitive with an autoregressive network provided it has more
non-observed state variables than the horizon size of the autoregressive network.
Consequently, it also needs more hidden neurons. The "nal state-space network has f

2
and

x5
2

as observed state variables, six non-observed state variables, C"[1 0 0 0 1 0 0 0] and
16 hidden neurons. Initial tests showed high-frequency oscillations and accidental o!sets in
autoregressive and state-space network simulations. These #aws disappeared on
regularizing the least squares through weight decay with l"0)01 [6]. Training stops after
15 iterations for the autoregressive network and after 30 iterations for the state-space
network. Test error of the autoregressive network yields E

T
"0)24e!03. The associated

simulation is illustrated in Figure 8. Test error of the state-space network is
E
T
"3)25e!03. At such accuracy levels, network and data responses seem superimposed.
Even though both networks produce satisfactory dynamic simulations, the

autoregressive network should be preferred. It has a smaller test error, but mainly it is of
Figure 8. Comparison of autoregressive network and test data on f
2
(t), non-linear one-wheel test,

E
T
"0)24e!03. **, data; - - - , network.
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a smaller size, making it both less susceptible to high variance and numerically cheaper to
identify. An autoregressive output error model is thus chosen to simulate real car dynamics.

4.3. IDENTIFICATION OF A CAR VERTICAL DYNAMICS

The aforementioned autoregressive neural network simulation is now applied to vertical
load calculation at a car suspension chamber based on seven acceleration recordings. The
accelerations provided are vertical accelerations at the front wheel steering knuckles (2),
vertical accelerations at front suspension spring supports (2), longitudinal, vertical and
transversal accelerations at the center of gravity of the car. Horizontal accelerations are
included because, contrary to vertical accelerations, they are dominated by low frequencies
and it is essential to account for the coexistence of low (below 5 Hz and medium to high
(between 5 and 50 Hz) frequency phenomena in car dynamics. The load was recorded by
a dynamometric wheel. The database is made up of 292)96 s recording at a sampling rate of
256 Hz, for a total of about 75 000 points. Assumptions underlying the one-wheel test case
(constant speed, curvature and ground probabilistic model) are not satis"ed.

Because experimental conditions are not well controlled, a neural structure minimizing
variance is chosen to identify the load history. It is a linear autoregressive model with
horizons of n

u
"4 and n

o
"6 (cf., equation (12)). Regularization by weight decay is applied

with l"0)1. The other characteristics of network learning are similar to those exposed
earlier in section 4.1.

The learning database is made up of three sample intervals [70}101], [109}125] and
[203}223] s. The rest of the recording constitutes the testing database. Complete recording
and network simulation are shown in Figure 9. One notices how di!erent parts of the road
have di!erent load responses. Overall, 83% of the network simulation shows error below
5%, 97% below 10% and 99)34% below 20%. A detailed view of a time interval not
included in learning is given in Figure 10.

5. CONCLUSIONS

Two complementary neural network-based techniques were applied to a dynamic system
identi"cation problem. First, the system's mass was identi"ed from accelerations using
Figure 9. Comparison of load recording and autoregressive simulation, complete data (training and testing), car
test. **, data; - - - , network.



Figure 10. Comparison of load recording and autoregressive simulation, zoom on some of the test data, car test.
**, data; - - - , network.
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feed-forward neural networks. Careful statistical tests were necessary to account for the
limited number of data. In particular, two techniques for controlling variance, early
stopping and cross-validation, have been used. Beyond the derivation of an identi"cation
program, the method showed synergy of the fourth statistical moment and the normalized
power spectral density to identify the system's mass.

Second, recurrent neural networks have been tested for simulating loads with known
accelerations at speci"c system's components. For a one-wheel system, autoregressive and
state-space structures were derived by discretizing the linear di!erential equation. It was
shown that horizon-based autoregressive networks should be preferred to state-space
networks: they performed slightly better with a lower model complexity, i.e., at a lower
numerical cost. It is likely that this result can be generalized to most dynamic systems which
do not have long memory e!ects, as opposed to non-linear material behaviors, for example.
An encouraging application of an autoregressive network to simulate a real vehicle
dynamics has been described. The robustness of the method to the deterioration of
mathematical assumptions (stationarity and ergodicity) in real testing conditions brings to
the fore the potential of neural system identi"cation for rapid structural dynamic modelling.
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APPENDIX A: MASS SENSITIVITY ANALYSIS

In this section, mass sensitivity analysis is carried out for the linear one-wheel problem
sketched in Figure 1. Equations of motion are

C
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1
0

0 m
2
D A

xK
1
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2
B#C

c
1
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The system frequency response function between the road de#ection and the hub
acceleration xK

1
is

H (u)"!u2X
1
, (A.2)

where X
1

is the solution of

C
k
0
#k

1
#ic

1
u!m

1
u2 !k

1
!ic

1
u

!k
1
!ic

1
u k

1
#ic

1
u!m

2
u2D A

X
1

X
2
B"A

k
0
0 B. (A.3)

The best frequency, u, for mass identi"cation using either the power spectral density
S
yy

(u) or the normalized power spectral density N
yy

(u) is sought. Such optimal frequency
maximizes the sensitivity to the mass and minimizes the sensitivity to S

x0x0
(u) (see also

equation (11)):

max
u

DLS
yy

(u)/Lm
2
D"max

u
D (LDH(u) D2/Lm

2
)D S

x0x0
(u) D, (A.4)

or,

max
u

DLN
yy

(u)/Lm
2
D"max

u
D(L(DH(u) D2/S0

y
)/Lm

2
)S

x0x0
(u) D (A.5)

and, simultaneously,

min
u

DLS
yy

(u)/LS
x0x0

(u)D"min
u

D DH(u) D2 D, (A.6)

or,

min
u

DLN
yy

(u)/LS
x0x0

(u) D"min
u

D( DH(u) D2S0
y
!DH(u)D4S

x0x0
(u))/S02

y
D. (A.7)

Log-derivatives of S
yy

(u) and N
yy

(u) with respect to mass and road are shown in Figures
A.1 and A.2. First of all, the largest mass sensitivities are obtained both for S

yy
(u) and

N
yy

(u) around 4 Hz, which is a local maximum of DH(u) D. Next, although S
yy

(4) is more
sensitive to the mass than N

yy
(4), it is also more sensitive to road variations. Normalizing
Figure A.1. Comparison of sensitivities of S
yy

(u) and N
yy

(u) to mass for various frequencies u. m
2
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D¹"100)352 s. *]*, D[LS
yy
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2
]/[S
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(u)]D; *s*, D[LN
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(u)/Lm

2
]/[N
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(u)] D.



Figure A.2. Comparison of sensitivities of S
yy

(u) and N
yy

(u) to S
x0x0

for various frequencies u. m
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the power spectral density by S0
y
"(+ui

S
yy
Y (u

i
)) yields a more robust estimate with respect

to road variations. This explains why, in section 3.4, N
yy

(u) is a more adequate input to the
neural network than S

yy
(u).
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